MdSSBAUER AND INFRARED SPECTROSCOPIC STUDIES OF SOME ORGANOTIN(IV) SCHIFF BASE COMPLEXES

J. N. R. RUDDICK and J. R SAMS

Department of **Chemistry, University of British** *Colunrbia Vancouver 8. B.C. (Canada)* **(Received February 6th. 1973)**

SUMMARY

Several organotin(IV) complexes with quadri- and terdentate anionic Schiff base ligands have been investigated in the solid state using ¹¹⁹Sn Mössbauer and IR spectroscopies, Mössbauer parameters derived from both zero-field and magnetically perturbed spectra suggest that the R₂Sn(Salen)(R = Me, Et, Ph) and Me₂Sn(Saldap-2-OH) complexes have similarly distorted trans-octahedral structures. However, in Ph , $Sn(HSaldap-2-O)$ the ligand appears to be only terdentate, leading to a pentacoordinate structure similar to those of the $R_2Sn(Sal-N-2-OC₆H₄)$ derivatives (R = Me, Ph). For Ph₃Sn(Sal-N-2-OC₆H₄) the asymmetry parameter of the electric field gradient is close to unity, confirming a mer-octahedral configuration for this complex.

INTRODUCTION

Considerable attention has been directed recently towards organotin complexes with Schiff bases¹⁻⁸, although interpretations of the results are often at variance. For example, Mössbauer spectra^{4,5} for some adducts of the type R_2SnCl_2 - $(H, Acacen)$ [H₂Acacen=N,N'-ethylenebis(acetylacetone imine) (I)] suggest octahedral structures with *trans* tin-carbon bonds in the solid state, but there is uncertainty about the dispositions of the remaining groups attached to tin. Smith and Dodd⁴

assume a cis-dichloro arrangement with the neutral ligand acting as a bidentate chelating group, whilst Barbieri et al.⁵ favour a trans-dichloro arrangement in which (I) acts as a bridging group, leading to a polymeric structure.

Relatively fewer studies have been reported^{3.7.8} on diorganotin(IV) complexes ofdianionic quadridentate Schiff bases, such as $R_{2}Sn(Salen)$ [H₂Salen=N,N'-ethylenebis (salicylaldimine) (II)]. The PMR spectrum of Me₂Sn(Salen) is complex^{3.7},

 \mathcal{L}_c . I.e.

.

with two singlets observed for the $SmMe₂$ resonance while the Salen C(H)=N and

 $(CH₂)₂$ protons are also each observed as two sharp lines. Murray and co-workers⁷ interpret these results in terms of a cis-dimethyl arrangement and a non-planar quadridentate Salen ligand, although Kawakami et al.³ suggest a mixture of *cis* and trans isomers in solution. Mössbauer measurements on the solid complex have been interpreted⁸ in terms of a distorted trans-dimethyl structure, and this has been confirmed⁹ very recently by X-ray crystallography. The X-ray structure shows a nearly planar Sn(ONNO) group and C-Sn-C angle of 160°. It seems likely that the complicated NMR spectrum of this complex in solution is due either to facile decomposition, reaction with the solvent $(CDCl₃)$, fluxional behaviour, or some combination of these effects.

The present work was undertaken with a view to studying the solid state structures of several related diorganotin(IV)-Schiff base derivatives via infrared and Mössbauer spectroscopies. In particular it was hoped that magnetically perturbed Mössbauer spectra, from which one can deduce both the sign of the 119 Sn quadrupole coupling constant ($e^2 \cdot q \cdot Q$) and magnitude of the asymmetry parameter (η), would provide a sensitive tool for structure elucidation in such complexes. In addition to (II), the Schiff bases employed were N, N' -(2-hydroxytrimethylene)bis-(salicylaldimine) $[H$ ₇Saldap-2-OH, (III)] and N-(2-hydroxyphenyl)salicylaldimine [HSal-N-(2-HOC₆H₄), (IV)]. (III) differs from (II) only in that the ethylene bridge between the

twa salicylaldimine moieties is replaced by a 2-hydroxytrimethylene bridge, whereas (IV) is potentially terdentate rather than quadridentate.

EXPERIMENTAL

The R_2 Sn derivatives of (II) ($R = Me$, Et, Ph) and the Me₂Sn derivatives of (III) and (IV) were prepared by published procedures^{7,10}. Analytical data for these and the other complexes reported here are given in Table 1.

TABLE 1

Compound	Found (calcd.) $(\frac{\gamma}{\rho})$				
	С	Н	Ν	Sп	
Me ₃ Sn(Salen)	51.75	5.07	6.77	28.8	
	(52.10)	(4.82)	(6.75)	(28.63)	
Et, Sn (Salen)	54.27	5.69	6.51		
	(54.20)	(5.42)	(6.32)		
Ph, Sn (Salen)	62.18	4.64	4.88	24.8	
	(62.36)	(4.45)	(5.19)	(24.56)	
Me , $Sn(Saldap-2-OH)$	51.24	5.19	6.51	26.8	
	(51.26)	(4.95)	(6.29)	(26.71)	
Ph ₂ Sn(HSaldap-2-O)	61.66	5.04	4.59	20.5	
	(61.18)	(4.57)	(4.92)	(20.89)	
$Me2Sn(Sal-N-2-OC6H4)$	49.71	4.22	3.73	33.1	
	(50.01)	(4.17) .	(3.89)	(33.01)	
$Ph2Sn(Sal-N-2-OC6H1)$	62.32	4.26	2.64	24.7	
	(62.01)	(3.93)	(2.89)	(24.56)	
$Ph_3Sn(Sal-N-2-OC_6H_1)$	66.24	4.81	2.27	21.4	
	(66.22)	(4.45)	(2.49)	(21.15)	

ANALYTICAL DATA FOR ORGANOTIN(IV) SCHIFF BASE COMPLEXES

Reacrion of triphenyhin hydroxide wifh H,Solen

1.83 g (5.0 mmol) of triphenyltin hydroxide and 0.67 g (4.0 mmol) of H. Salen were azeotropically distilled in benzene for 4 h. Upon cooling a yellow solid was precipitated, whose analytical data, melting point, IR and Mössbauer spectra were identical to an authentic sample of $Ph₂Sn(Salen)$.

Preparation of Ph , Sn [Sal-N-(2-OC₆H_a)]

0.72 g (4.0 mmol) of freshly prepared diphenyltin oxide and 0.53 g (4.0 mmol) of H₂Sal-N-(2-HOC₆H₄) were refluxed azeotropically in benzene for 1.5 h. The solution was concentrated under vacuum, and orange-brown crystals formed upon standing. $Ph₂Sn(HSaldap-2-O)$ was prepared in a similar manner from-diphenyltin oxide and H_2 Saldap-2-OH.

*Preparation of Ph*₃*Sn* \lceil *Sal-N-(2-HOC₆H₄)* \rceil

0.73 g (2.0 mmol) of triphenyltin hydroxide and O-43 g (2.0 mmol) of the Schiff base were refluxed in benzene for 3 h, during which the water formed by the reaction was removed. Upon cooling an orange precipitate appeared which was collected by filtration and recrystallised from benzene.

Spectroscopic measurements

Infrared spectra in the range $4000-250$ cm⁻¹ were recorded on a Perkin-Elmer 457 instrument, with the samples usually as nujol mulls.

Mössbauer measurements in zero magnetic field were made using a spectrometer which has been described¹¹, the finely powdered samples being maintained at liquid nitrogen temperature. The room-temperature source was 10 mC BaSnO_3 , and isomer shifts are reported relative to this source. The data were least-squares

(continued on p_ 240)

TABLE 2

INFRARED SPECTRA IN THE REGION 1700-250 cm^{-1a}

f

 $\boldsymbol{\beta}$

 \bar{z}

(continued)

 $250 m$

 $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$, where $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$

Ì,

 \bar{z}

^a vs, very strong; s, strong; m, medium; w, weak; vw, very weak; (br), broad; (sh), shoulder.

fitted to Lorentzian line shapes using a programme which imposes no constraints on the fitting parameters. The estimated precision of these measurements is ± 0.05 mm $-s^{-1}$.

Magnetically perturbed Mössbauer spectra were recorded with both source and absorber at 4.2 K. The absorber was stationed at the centre of a Westinghouse superconducting solenoid, and magnetic fields up to **50 kG** were applied parallel to the direction of the y-my beam. **The** source was driven vertically by an Austin Science Associates model S3 drive unit mounted in the vacuum space of the cryostat. Care was taken to **ensure that the** source was outside the fringing field of the magnet. Data were fitted to theoretically computed spectra using a programme written by J. C. Scott¹². The input parameters were the magnitude of the applied field (H_{app}), zero-field quadrupole splitting (ΔE_0) and linewidth (*F*), and the sign of $e^2 \cdot q \cdot Q$ (which **in** every case was obvious from a visual inspection of the data). The asymmetry parameter was then varied to obtain the best fit between observed and calculated spectra.

RESULTS AND DISCUSSION

Infrared data in the 1700–250 cm⁻¹ region for the Schiff base ligands (II)–(IV) and the organotin complexes derived from them are given in Table 2. The spectra are very complicated and in many cases band assignments cannot be made with certainty. Tentative assignments for a number of the bands, arrived at largely by comparison with previously published suggestions for closely related ligands and complexes **1.2.7-9.13-25 are given in the** last column of Table 2.

Our discussion will centre primarily on the ¹¹⁹Sn Mössbauer data given in Table 3, with supporting evidence from the IR spectra. The ΔE_0 values for the R₂Sn-(Salen) complexes lie at the low end of the range normally observed for *trans-R₂SnX₄*

TABLE 3

_' . . '.

MÖSSBAUER PARAMETERS FOR THE COMPLEXES AT 90 K

^a With respect to BaSnO₃ at room temperature. ^b Sample prepared from Pb₃SnOH and H₂Salen. ^e Ref. 2.

compounds^{26,27}. This is not unexpected in view of the reported⁹ C-Sn-C angle of 160[°] in the methyl derivative. Since it is the organic groups which largely determine the magnitude of ΔE_0 , the rather large departure of the Me₂Sn fragment from linearity is reflected in a reduced quadrupole splitting. The very smimilar δ and ΔE_0 values

found for dimethyl and diethyltin(Salen), together with the JR data, leave little doubt that these derivatives have similarly distorted trans-octahedral structures in the solid state.

Ph₂Sn(Salen) exhibits significantly lower values of δ and ΔE_0 than do the alkyltin compounds. Some lowering of both parameters is expected from electronegativity considerations and the differences observed here are not inconsistent with trends observed in similar series of presumably isostructural compounds^{21,26,27}. For example, a recent study of a large number of Lewis base adducts of R_2 , $SnCl_2(R =$ Me, Ph)²¹ shows differences in δ values between corresponding methyl and phenyl derivatives ranging from 0.10 to 0.26 mm \cdot s⁻¹, compared to 0.25 mm \cdot s⁻¹ for the Salen complexes. Table 4 gives quadrupole splitting data for eight **pairs** of dimethyl and diphenyltin compounds, all of which are either believed or known to have transoctahedral structures. In every case the methyl derivative shows the larger splitting, the differences ranging from 0.32 to 0.61 $\text{mm}\cdot\text{s}^{-1}$. Thus, there is nothing unusual about

TABLE 4

¹¹⁹Sn MÖSSBAUER QUADRUPOLE SPLITTINGS FOR SOME PAIRS OF trans-OCTAHEDRAL **DIMETHYL- AND DIPHENYLTIN DERIVATIVES**

Compound	$\Delta E_{\rm o}(Me)$ $(mm \cdot s^{-1})$	$\Delta E_{\rm o}(Ph)$ $(mm - s - 1)$	$\Delta[\Delta E_{\rm o}(Me-Ph)]$ $(mm s^{-1})$	Ref.
R , $SnCl4$ ²	4.32	3.80	0.52	35
$R_2SnCl_2(Bipy)^n$	4.08	3.51	0.57	36, 37
R_2 SnCl ₂ (Py), ^b	4.00	3.39	0.61	38, 37
R_2 SnCl ₂ (Me ₂ SO),	4.18	3.86	0.32	21
R ₂ SnCI ₂ (Ph ₂ SO) ₂	4.19	3.73	0.46	21
$R3SnCl2(PyO)2$	4.02	3.47	0.55	21
$[R_2SnCl(Terpy)]ClO4d$	3.50	3.01	0.49	39
$[R$, SnCl(Terpy)] BPh. ⁴	3.58	3.24	0.34	39
			A_{E} 0.48	

y Bipy 2,2'-bipyridine. b Py pyridine. c PyO pyridine-N-oxide. d Terpy 2,2',2"-terpyridine.

: ..

the difference of 0.54 $mm \cdot s^{-1}$ observed for the $R_2Sn(Salen)$ complexes, and no ap**parent reason to doubt** that Ph,Sn(Salen) also has a distorted trans-octahedral structure, very similar to that of the methyl derivative_

Barbieri and Herber⁸ have recently arrived at somewhat different conclusions concerning the structure of $Ph₅$ n(Salen), primarily on the basis of some very crude point-charge calculations. These authors employ the Parish and Platt²⁸ empirical scale of partial quadrupole splitting $(p.q.s.)$ values for methyl and phenyl groups together with the assumption that the contribution of the Salen oxygen and nitrogen atoms to the electric held gradient at tin is the same as that due to four chlorides. Then using C-Sn-C angles of 160° for both molecules Barbieri and Herber⁸ compute $|\Delta E_{\rm ol}|$ values of 3.68 mm s^{-1} for Me₂Sn(Salen) and 3.27 mm s^{-1} for Ph₂Sn(Salen). Agreement with the measured values is considered⁸ to be satisfactory in the former case but not in the latter, and it is inferred that "the introduction of two phenyl groups into the quasi axial (*trans*) positions with respect to the metal atom would involve considerable steric interaction between the organic ligand and the tetra-

.;

. .,

dentate Salen²⁻ moiety⁸. Thus they suggest considerably more distortion for the phenyl complex, in order to account for the lower ΔE_0 .

We have measured the Mössbauer spectra of both Me₂Sn(Salen) and Ph₂Sn-**(Salen) in applied longitudinal magnetic fields of 50 kG. Comparison of theoretical** and observed spectra (see Fig. 1) reveals that in both cases $e^2 \cdot q \cdot Q$ is positive and $\eta = 0.5 \pm 0.1$. (Barbieri and Herber⁸ erroneously assume $\eta = 0$ for the methyl derivative.) **The sign of the coupling constant is that expected for a trans-octahedral species, and** the *n* values show that the departure of the e.f.g. tensor from axial symmetry is essenti**ally the same in the two molecules. While these results do not constitute a structure proof for the phenyl complex, they do suggest that its structure is not likely to be very dilferent from the methyl derivative.**

Fig. 1. Mössbauer spectrum of Ph₃Sn(Salen) at 4.2 K in an applied longitudinal magnetic field of 50 kG. The velocity scale is relative to the centroid of the zero-field spectrum (add 0.88 mm \cdot s⁻¹ to convert to BaSnO₃). The solid line is the theoretically computed spectrum assuming $e^2 \cdot q \cdot Q + 288$ mm·s⁻¹ and **q 0.50.**

From the strong similarity in Mössbauer parameters for Me₂Sn(Salen) and **Me,Sn(Saldap-ZOH), we conclude that these two compounds also have similar structures, with the Saldap-2-OH anion acting as a quadridentate group. Further support for this conclusion derives from IR spectra in the v(O-H) region. Neither of** the ligands (II) nor (IV) shows a band in the anticipated region $3600-3200$ cm⁻¹, **presumably because of intramolecular hydrogen bonding between the phenolic oxygens and the nitrogen atoms. Such hydrogen bonding is not expected for the hydroxyl group on the bridging aliphatic chain in (III), where v(O-H) is seen at 3450 cm-'. This band is also present in Me,Sn(Saldap-2-OH) shifted to 3400 cm-', indicating that the propan-2-01 functional group is not involved in bonding to tin.**

On the other hand this band is absent in the spectrum of the diphenyltin derivative of (III), where only a weak, broad absorption at 3200–3160 cm⁻¹ is observed. This suggests that at least one phenolic oxygen is not used in bonding and that the **tin-oxygen bonding probably involves the other phenolic oxygen and the oxygen atom in the propane chain Thus, the anion of (III) appears to be acting here as a bidentate, or more likely terdentate ligand, leading to tetra-or pentacoordinatiou**

Fig. 2. Mössbauer spectra of (a) Me₂Sn(Saldap-2-OH) and (b) Ph₂Sn(HSaldap-2-O) at liquid nitrogen **temperature. The velocity scale is relative to BaSnO,.**

for the tin atom. For this reason we have formulated the complex as $Ph₂Sn(HSaldap-$ 2-O). The ¹¹⁹Sn quadrupole splitting is also consistent with this compound having a different structure from the $R₂Sn(Salen)$ complexes and the dimethyltin derivative of (III). ΔE_0 is 0.83 mm·s⁻¹ smaller than the value for Ph₂Sn(Salen) and 1.26 mm·s⁻¹ smaller than the splitting in $Me₂Sn(Saldap-2-OH)$. For a trigonal bipyramidal R_2 Sn X_2 Y structure with equatorial R groups, one expects a positive quadrupole coupling constant and an asymmetry parameter which is fairly large. In an applied magnetic field of 50 kG we find $e^2 \cdot q \cdot Q > 0$ and $\eta = 0.7 \pm 0.1$ for Ph₂Sn(HSaldap-2-O), in agreement with these expectations. (We should point out that if the R groups were both in apical positions $e^2 \cdot q \cdot Q$ would also be positive but *n* should be small, while for one apical and one equatorial R group $e^2 \cdot q \cdot Q$ would be negative. These two possibilities can therefore be ruled out.)

The fact that $Me₂Sn(Salen)$ and $Ph₂Sn(Salen)$ appear to be structurally similar whereas the corresponding complexes formed from (III) show such pronounced differences is quite interesting. This suggests that with a bulky diorganotin moiety the latter ligand is able to reduce ring strain in the complex by utilizing the propan-2-01 functional group for coordination to the tin atom.

Both the dimethyl- and diphenyltin derivatives of (IV) show ΔE_0 values consistent with equatorial R groups and trigonal bipyramidal coordination at tin. Indeed, the values are quite similar to those observed² in the closely related $R₂SnCl-$ (Ox) (HOx=8-hydroxyquinoline) compounds (Table 3). For Me₂Sn(Sal-N-2-OC₆- H₄) application of a 50 kG magnetic field reveals that $e^2 \cdot q \cdot Q$ is positive and $\eta = 0.7 \pm$ 0.1, essentially identical to the results for Ph₂Sn(HSaldap-2-O). While the difference in $\Delta E_{\rm O}$ values of 0.85 mm·s⁻¹ between the two complexes of (IV) may at first appear to suggest the possibility of different structures, we doubt that such is actually the case. It should be noted that the ditference in the corresponding chloro-oxinates is nearly as large (0.73 mm·s⁻¹), and for the pentacoordinate derivatives R_2SnCl_2 - (R'_2SO) (R'= Me, Et, Pr, Bu) Liengme, et al.²¹ report an average difference in ΔE_Q of 0.78 mm $-s^{-1}$ between corresponding methyl- and phenyltin complexes.

The triphenyltin derivative of (IV) exhibits an appreciably greater splitting than does the diphenyltin complex, and poses an interesting question concerning its structure. The ΔE_Q value of 2.88 mm·s⁻¹ would certainly be consistent with a trigonal bipyramidal structure with the three phenyl groups in the equatorial plane (cf) . Ph₃SnCl-4-phenylpyridine, ΔE_0 2.90 mm-s⁻¹)²⁹. This would imply that the Schiff base anion is acting as a bidentate bridging group leading to a polymeric structure. Another possibility which suggests itself, however, is a *mer*-octahedral structure (V) in which the ligand is terdentate, and which would also be expected³⁰ to produce a quadrupole splitting of about 3 mm s^{-1} (A *fac*-octahedral configuration can be

eliminated since all three phenyls would be *tram* to an electronegative group and ΔE_0 should be approximately zero³⁰.) The use of magnetic perturbation Mössbauer spectroscopy is particularly attractive in this case since the two likely structures should yield very ditIerent results. For the pentacoordinate structure one expects $e^2 \cdot q \cdot Q$ to be negative and $\eta \approx 0$, whereas the *mer*-octahedral case should show $\eta \approx 1$ with the sign of the \dot{e} . f . g depending on fine details of the electronic distributions in Sn-0 and Sn-N bonds and the values of the bond angles at the tin atom. In fact, for a mer-R₃SnX₃ system $V_{xx}=0$, $V_{yy}=-V_{zz}$ and $\eta=1$ (the V_{ii} are the diagonal elements of the e.f.q. tensor). In an applied field of 50 kG, the Mössbauer spectrum of Ph₃Sn-(Sal-N-2-OC₆H₄) is nearly symmetrical in appearance, and we estimate that $\eta \approx 0.9$ with $e^2 \cdot q \cdot Q$ negative. A detailed fit to theoretically computed spectra was not attempted since the large asymmetry parameter so clearly rules out a bridged pentacoordinate structure with equatorial phenyl groups. ;

It is interesting to compare the reactions of (II) and (IV) with $Ph₃SnOH$ in refluxing benzene. In the former case cleavage of one of the tin-phenyl bonds results and the sole product isolated is $Ph₂Sn(Salen)$, shown by melting point, analytical data, IR and Mössbauer data (Table 3) to be identical to a sample of Ph , $Sn(Salen)$ prepared in the usual way from $Ph₂SnCl₂$. In the latter case, where the ligand is potentially only terdentate, the Ph,Sn moiety remains intact. Thus, in their organotin complexes both anionic ligands appear to have strong tendencies to act as chelating

groups using their maximum ligating abilities, rather than as bidentate groups bridging two organotin fragments. Similar behaviour is observed in tin(IV) halide complexes with (II) of the type $SnX_2(Salen)$ (X = Cl, Br, I), in which the Salen²⁻ ion is quadridentate and the halogens occupy trans positions³¹. On the other hand the neutral Schiff bases (I) and (II) appear to be only bidentate in adducts of the types R_2 SnCl₂(H₂L)^{4,5} and SnX₄(H₂L) (X = Cl, Br, I)³¹.

The rather low isomer shift values for,the Schiff base complexes, compared with other five- and six-coordinate di-organotin derivatives, indicates a reduction in the effective "s" electron density at the tin nucleus. Since no large variation in tinnitrogen bonding is anticipated this reduction may be attributed to highly polar $\lim_{n \to \infty}$ bonds, resulting in an increased removal of "s" electron density from tin. This interpretation is supported by the rather long $Sn-O$ bond lengths observed⁹ in Me₂Sn(Salen) (2.19-2.25 Å), as compared to some other Sn-O bonds $\lceil Me_2Sn_1 \rceil$ $(Ox)_2$ ³², 2.11 Å; $(C_6H_{11})_3$ SnOCOMe³³, 2.12 Å]. In addition, the variation in the two Sn-C bond lengths (2.06 and 2.19 Å) in \overline{Me}_2 Sn(Salen) reported by Calligaris et al.⁹ is interesting. The former is very short, even shorter than that found for $Me₂$ - $SnF₂³⁴$ and much shorter than that observed for $Me₂Sn(Ox)₂³²$ (2.16 Å). The distortion of the Me₂Sn (Salen) molecule, presumably arising largely from the ligand geometry, may cause an increase in the "p" orbital mixing in the tin-carbon bonds with a concomitant screening of the " s " electron density and a lower isomer shift.

ACKNOWLEDGEMENTS

We wish to thank Mrs. A. Sallos and Miss P. Watson for technical assistance. Financial support from the National Research Council of Canada is acknowledged.

REFERENCES

- 1 K. Kawakami and R. Okawara, *J. Organometal. Chem.*, 6 (1966) 249.
- 2 R. C. Poller and J. N. R. Ruddick, *J. Chem. Soc. A, (1969)* 2273.
- 3 K. Kawakami, M. Miya-Uchi, and T. Tanaka, *J. Inorg. Nucl. Chem.*, 33 (1971) 3773.
- **4 P. J. Smith and D.** Dodd, J. *Orgonomeral.* Chem.. *32 (1971)* **195.**
- 5 R. Barbieri R. Cefalu, S. C. Chandra and R. H. Herber, *J. Organometal. Chem.* 32 (1971) 97.
- **6 L. Roncucci, G. Faraglia, and R. Barbieri. J. Orgonomerol. Chem, 1 (1964) 427.**
- **7 A. van den Berges R J. Cozens and K. S. Murray, J. Chen~ Sot. A, (1970) 3060.**
- **6 R. Barbieri and R H. Herber. J. Orgonon~erol. Chem., 42 (1972) 65.**
- **9** M. **Calligaris, G. Nardin, and L. Randaccio, J. Chem Sot. Dolron Trans., (1972) 2003.**
- **10** K. **Dey, J. fnorg. Nucl.** *Chem..* **32 (1970) 3125.**
- **11 W. R. Culles D. A. Harboume, B. V. Liengme** and J. R. Sams, *Inorg. Chem.. 8 (1969) 95.*
- 12 J. C. Scott, Thesis, University of British Columbia, 1973.
- 13 R. T. Conley, "Infrared Spectroscopy⁻, Allyn and Bacon, Boston, 1972, p. 250 ff.
- **14 K. Ueno and A_ E Martelt, 1. Phys Chem, 60 (1956) 1270.**
- 15 F. Di Bianca, E. Rivarola, G. C. Stocco, and R. Barbieri, Z. Anorg. Allg. Chem., 387 (1972) 126.

 $\mathcal{F}^{\mathcal{A}}_{\mathcal{A}}$ and $\mathcal{F}^{\mathcal{A}}_{\mathcal{A}}$ and $\mathcal{F}^{\mathcal{A}}_{\mathcal{A}}$ are the set of the set of $\mathcal{F}^{\mathcal{A}}_{\mathcal{A}}$

- **16 N. S. Biradar and V. H. Kulkami J. Inorg. Nucl. Chenr, 33 (1971) 3781.**
- **17 G. C. Percy and D.** A **Thornton, J. lnorg. Nucl Chem, 34 (1972) 3357.**
- **18 G. C. Percy and D.** A *Thornton, J. Inorg. NucL Chem.,* **34 (1972) 3369.**
- **19 M. M. McGrady and R S. Tobias, J. Amer. Chem. Sot, 87 (1965) 1909.**
- **20 R. C. Poller, Spectrochim. Acrq 22 (1966) 935.**

 $\label{eq:2} \mathcal{F}^{\mathcal{A}}_{\mathcal{A}}(\mathcal{A}) = \mathcal{F}^{\mathcal{A}}_{\mathcal{A}}(\mathcal{A}) = \mathcal{F}^{\mathcal{A}}_{\mathcal{A}}(\mathcal{A}) = \mathcal{F}^{\mathcal{A}}_{\mathcal{A}}(\mathcal{A})$

- **21 B. V. Liengme, R. S. Randall, and J. R. Sams. Con. J.** *Gem., 50 (1972)* **3212.**
- **22 M K Dar, J. Buckle** and P. G. Harrison *lnorg. Chim Acta_ 6 (1972) 17.*

246 J. N. R. RUDDICK, J. R. SAMS

23 R.J. H. Clark, A. G. Davies, and R. J. Puddephatt, J. Chem. Soc. A, (1968) 1828.

24 S. C. Jain and R. Rivest, J. Inorg. Nucl. Chem., 29 (1967) 2787.

25 D. V. Naik and C. Curran, Inorg. Chem., 10 (1971) 1017.

26 P. J. Smith, Organometal Chem. Rev. A, 5 (1970) 373

27 R. C. Poller, The Chemistry of Organotin Compounds, Logos Press, London, 1970, p. 246 ft.

28 R.V. Parish and R. H. Platt, Inorg. Chim. Acta, 4 (1970) 65. -15

29 R. C. Poller and J. N. R. Ruddick, J. Organometal. Chem., 39 (1972) 121.

30 J. R. Sams, m. C. A. McDowell (Ed.), MTP International Review of Science, Phys. Chem. Ser. One. Vol. 4, Chap. 3. Butterworths. London. 1972

31 J. N. R. Ruddick and J. R. Sams, to be published.

32 E. O. Schlemper, Inorg. Chem., 6 (1967) 2012.

33 N. W. Alcock and R. E. Timms, J. Chem. Soc. A. (1968) 1876.

34 E. O. Schlemper and W. C. Hamilton, Inorg. Chem., 5 (1966) 995.

35 B. W. Fitzsimmons, N. J. Seeley and A. W. Smith, J. Chem. Soc. A, (1969) 43.

36 R. H. Herber and H. A. Stöckler, J. Chem. Phys., 47 (1967) 1567.

37 R. C. Poller, J. N. R. Ruddick, M. Thevarasa and W. R. McWhinnie, J. Chem. Soc. A, (1969) 2327.

38 K. M. Ali, D. Cunningham, J. D. Donaldson, M. J. Frazer and B. J. Senior, J. Chem. Soc. A, (1969) 2836.

ų.

39 N. W. G. Debye, E. Rosenberg and J. J. Zuckerman, J. Amer. Chem. Soc., 90 (1968) 3234.